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Abstract—Under the Church-Turing thesis (CTT), there must
exist Turing machines (TM) for non-interactive computers.
Therefore, certain chatbots (e.g., ChatGPT, Google Gemini) must
have TM counterparts. By considering the limitations of TM, the
paper identifies several issues that the chatbots encounter. First,
the evaluation of chatbots is difficult due to them possessing
undecidable properties associated with TMs. Secondly, since
chatbots are reducible to TMs they face the same problems that
many computers do. Lastly, I also argue that to achieve a more
“intelligent” chatbot, artificial intelligence practitioners must
consider breaking CTT and consider concepts like interaction
and semiotics.

Index Terms—chatbot, automata theory, Turing machine, cog-
nitive science

I. INTRODUCTION

The Church-Turing thesis (CTT) implies that many com-
puter programs can be described as Turing machines (TM;
see Appendix A for a full definition). I argue that modern
chatbots (e.g., ChatGPT, DALL-E, and GitHub Co-Pilot) can
be turned into TMs. This means they possess all weaknesses
of all computers. While TMs are impractical devices, they
allow us to make mathematical and formal arguments. For
instance, if we demonstrate that a TM cannot solve a problem,
neither can a computer. Modern chatbots are reducible to
TMs because they are essentially functions that transform a
string into another. While chatbots deploy neural networks
and advanced mathematical techniques, these are insufficient
to break the confines of CTT. To gain freedom, a chatbot must
become what Turing described as a choice machine. In this
work, I provide TM-based definitions for several aspects of
modern chatbots that use generative Al (GAI). Then, I show
that determining if a chatbot is good or not is undecidable.
Furthermore, I argue that it is incapable of creativity because,
unlike natural human interactions, a TM cannot modify its
symbols.

It is important to note that this paper does not argue that
Al evaluation is impossible. Just because an arbitrary instance
of a problem is undecidable, it does not mean that specific
instances are not. There are also cases where evaluations must
be carried out even if we do not have good knowledge. An
example of this is the field of human-computer interaction
(HCI) which involves evaluations of user interfaces (UI).
While it is difficult to formalize the notion of “good”, we still
deploy questionnaires (e.g. [1]) to better understand them.

II. BACKGROUND INFORMATION: TURING MACHINE

A Turing Machine (TM) is an imaginary tape reader/writer.
Each tape has an infinite number of cells, and each cell has
a single symbol. While any symbol can be on the tape (e.g.,
English alphabets, Hindu-Arabic numbers, emojis), they must
also be defined in the TM’s own symbol set. Let > be the
symbol set. For example, if ¥ = {0,1}, then the tape can
only contain 0’s and 1’s. One of the symbols must be a “blank”
symbol which signifies that the cell is empty. The TM also has
a series of states and has one initial state that it must begin
at. The user provides an input tape, 7. The TM, based on its
current state and the symbol that it has read, performs these
actions:

o Write: Write the same symbol that it has read, or a new
symbol within its X.

o Move: Stay in the same cell, or move left or right by one
cell.

o Transition: Stay in the same state or change its state.

The machine will repeat these operations until it reaches
a halting state. Once the halting state is reached, the content
on 7 will become its output. Under CTT, we can assume that
many algorithms must have TMs that can solve them. The
definition of the TM here is based on Goldin et al [2].

A. Variations of Turing Machines

There are variants of TMs. First, a multi-track TM is a TM
that can process more than one tape at once [3]. Secondly, a
nondeterministic Turing machine (NTM) can produce multiple
output based on a single input. This is in contrast to a TM
which can only produce one answer for a single input [4].
Neither is more powerful than a TM because a normal TM
(i.e. a single-track deterministic TM) can simulate both [3],
[4]. Finally, a universal Turing Machine (UTM) is a TM that
can simulate other TMs encoded as TM tapes called standard
descriptions (SD) [5]. A modern analogue of a UTM is a
computer with virtualization software that can simulate virtual
computers with have been encoded into files.

III. RELATED WORK

TMs serve as the main inspiration for this work. Utterly
impractical as actual computing devices, TMs have nonethe-
less been used to make predictions about actual computers.
TMs are particularly appealing in certain cases, because they
capture the most basic notion of computation. In essence,



if our argument applies to a TM, then it will apply to any
other computer. For example, Cook-Levin’s theorem [6] and
Karp’s reductions [7] argue that some problems are difficult
to solve (unless P = N P) by using TMs at the foundation of
their arguments. Some cognitive scientists like Putnam even
argue that Turing machines can be used to represent cognition
itself [8]. When we rely on TMs to make argument, we are
essentially making an argument based in functionalism. We
are making arguments based on what something does, and
not based on what it is [9]. It is important to note that
Turing machines may not be able to present all types of
modern computers [10]. For instance, a Turing machine cannot
represent a computer that involves interactions [10]—e.g., self-
driving vehicles [10], and a desktop computer with a mouse.

Generative Al (GAI) is a type of Al that is designed to
generate an output based on input information. In the case
of Dall-E, an image is created based on the textual input
by the user [11]. A simple GAI system like a Naives Bayes
classifier does not require a neural network. However, complex
systems like large language models (LLM) or Dall-E do. At
the simplest level, a neural network contains three main types
of nodes: input, output, and hidden layers. The information
inside the hidden layers can be difficult to understand. A
neural network can contain many hidden layers. Deep learning
involves using multiple hidden layers in a single network.
There are several types of language learning models that use
deep learning. Earlier ones used recurrent neural networks.
Howeyver, the more successful one is the Transformers [12].
Transformers have been adapted text-to-image Als such as
Dall-E [11]. LLMs, a type of GAI, can have a chatbot interface.
Earlier chatbots like ELIZA [13] are primitive and solely rely
on pattern matching. Although these chatbots can pass the
Turing test [14], they only have a limited number of responses
to the user. Current chatbots can incorporate LLMs and GAI
to create a more personalized user experience [15].

In order to make computer-science definitions and argu-
ments for chatbots, we must be able to argue that they can
behave like a universal TM (UTM). A UTM is a type of TM
that can accept the SD of another TM, and simulate it—akin to
a computer running a virtual computer. Being to demonstrate
that something is a UTM means, that thing is capable of
computation. Chung & Siegelmann [16] demonstrate that a
recurrent neural network (RNN) can be trained to behave like
a UTM. This means many machine learning (ML) models,
including chatbot-based Al, can behave like computers.

IV. FORMAL DEFINITIONS OF CHATBOT WITH
GENERATIVE ARTIFICIAL INTELLIGENCE

In this section, I define a chatbot using GAI, and the training
software for the chatbot as TMs. While I use NTM and multi-
track NTM as part of definitions, these are no more powerful
than a normal TM because they can be converted into normal
TMs.

Definition 1. For each chatbot using GAI, there exists a non-
deterministic TM named M 47 which accepts a user prompt as
tape 7,. 7, encodes p which is a string in a formal language

L,. Mar converts 7, into 7, which encodes a, a string in
another formal language £,. £, can represent strings, encoded
images, encoded audios, encoded videos and more. If the user
has previously used M ,4;, information on the previous 7,’s
can be included into 7.

Remark. The format of 7, can be different based on the
type of Al For instance, a chatbot that answers with a text, 7,
might be: [a] m .. .. Meanwhile,
an image-generating chatbot like Dall.E may produce 7,
that contains image metadata followed by a set of 3-vectors
describing pixel colours. Furthermore, Definition 2 assumes
that the chatbot does not have a memory. However, if the
memory is to be used, we can encode a memory as symbols
on 7.

Definition 2. For each training software for M4y, there
exists a multi-track NTM named Mp which accepts the SD of
Mg as a tape, and a tape named 74 which contains encoded
training data. Mp smithes (i.e. modifies) the SD using 74.
Let £, , be the set of a’s that can be produced for the same
p. Lop C L,. The goal of My is to train M4y in order to
maximize the size of £, , while maintaining the goodness of
ac Lap.

Definition 3. For each human-in-the-loop software for M 47,
there exists a multi-track NTM named Mg which accepts 7471,
Ta, and 7p. 7, contains the SD of Maj. T4 represents a set
named A. A contains answers (a) which have been generated
by M ;. All answers are in L,. Finally, 7, contains human-
generated information on the best a € A. My modifies 747
based on 74 and T,.

V. UNDECIDABILITY

An important task for evaluating M 4 is that we must be
able to decide if it will only produce good output. However,
this is undecidabl because since M 4 is also a TM.

A. Good Output Is Undecidable

The definition of good is subjective. Still, I argue that,
in general, being “good” means M 4; only produces an
answer that is appropriate to the prompt. For instance, if
we ask M4 to generate an image, it should not con-
tain any hallucination. Furthermore, if Ms; must pro-
vide an answer to a question encoded in p, the answer
should not only be correct, but useful to the user. For in-
stance, most people know that the name of the capital of
Thailand is “Bangkok.” However, the real and full name
of the capital is actually: “Krungthepmahanakhon Amon-
rattanakosin Mabhintharayutthaya Mahadilokphop Nopphara-
tratchathaniburirom Udomratchaniwetmahasathan Amonphi-
manawatansathit Sakkathattiyawitsanukamprasit”! This an-
swer is the most correct one, but should only be presented
in rare circumstances. After all, even the local Thai people
almost always only use the first few syllables. Therefore, good
M a7 will answer that “Bangkok”, “Krungthep”, “Krugthep-
mahanakhon” are equally good, but each should be used in

I'Spelling obtained from: https://en.wikipedia.org/wiki/Bangkok.



a specific context. Local people will colloquially call the
capital “Krungthep.” “Krugnthepmahanakhon” is more formal
and more official. Meanwhile, “Bangkok” can be considered
official and formal if used outside of Thailand.

Theorem 1. Good Output problem, or determining if
M 41 will only produce good a is undecidable.

Proof. This is a proof by contradiction. Assume that it is
possible to computationally decide if M 4; will only produce
good a € L,. Then, it is possible to construct M; which
accepts 7471, a tape which encodes the SD of M 4;. M then
determines if M 4; will only print specific sets of symbols
which lead to good a. However, Turing demonstrates that the
Printing problem is undecidable; we cannot construct a
TM to predict if another arbitrary TM will ever print a specific
symbol [17]. Since M ; must decide if M 4; will print certain
sets of symbols, this is a contradiction and such machine
cannot exist. Therefore, M ; may not exist and the problem
may be undecidable.

At this point, we cannot show that the problem is truly
undecidable for M 45, because the Printing problem is
still decidable for some TM. For instance, Windows 11 Co-
Pilot can easily recognize if this Python code will print “G”:
print(”’G”), and this Python code can trivially be converted
into a TM. As such, some TMs are decidable even if the
problem in general is not. Let M be the set of all TMs and
M a1 be the set of all possible M 4;’s. It is conceivable that the
Printing problem is decidable on all M 4; because M4
is just a subset of M. This means constructing M ; might still
be possible for M 45.

To show that M; cannot be constructed for M4, we
must show that the undecidability of Print ing problem also
applies to M 41 by proving that all members of M is reducible
to a machine in M 4. Let M’ be a TM that has memorized a
SD of M € M in its neural network. M’ also contains a RNN
which is trained to act like a UTM. When M’ runs, it accepts
a tape 7. Then, it simulates M which then processes 7. Since
M’ acts like a chatbot with a neural network that converts
one string to another, M’ € M. Thus, the Printing
problem also undecidable for M 4;. Therefore, M; cannot
be constructed and Good Output is undecidable.

This proof is based on the work by Brennan [18]. Hers is
about demonstrating that determining if TM-reducible Al is
ethical is impossible. Unlike mine, her proof relies on the the-
orem which states that the Halt ing problem is undecidable.
However, I argue that Turing’s theorem is more applicable
here because we want to focus more on output. Additionally,
Brennan’s proof assumes that Al programs are the same as any
computer program (i.e. M 4; = M) without any reduction.

O

Remark. 1t is important to note that computational unde-
cidability is a very strict description. While Printing is
undecidable for an arbitrary TM, there are still TMs that
can be decided on. Furthermore, there are multiple degrees
of undecidability; some problems have fewer undecidable
instances than others [17]. Still, we must be aware that some

of these problems can be very difficult. For instance, while
Halting is undecidable, determining if a NTM will halt
within n steps is decidable. However, it is also NP-complete
(i.e. hard) [19].

VI. HARDNESS OF PROMPTS

Tp may include an instance of a problem that must be
solved using an algorithm. This requires M 4; matching the
tape against various solvers that M 47 knows. For instance, an
unscrupulous student in a logic class may ask M 45 to check
if a Boolean expression is satisfiable. M 4;, after parsing the
student’s question, matches p with a SAT solver and applies
the solver on p.

Definition 4. Let p be a prompt that contains a problem
that requires an algorithm to solve, S be a set of TMs that
represent solver algorithms, R be a set of recognizers. Each
r € R is a formal grammar. If p is accepted by r, then p
solvable by s € S and M 4; applies s on p.

Remark. 1t is important to note that this definition only
applies to general-purpose chatbots (e.g., ChatGPT). Some
chatbots are specialized and are not designed to be universal
problem solvers. Furthermore, it is unlikely that R and S ac-
tually exist or are implemented within the bots’ programming.
Rather, they have to be inferred.

Since humans generate prompts, r should work with a
natural human language. Because human languages can be
modelled using context-sensitive grammars (CSG) [20], then
r should be a CSG. This is challenging because deciding
whether a CSG will accept p is PSPACE-Complete [21].
Since PSPACE-Complete problems are likely to be difficult
to solve, M 4; may not have enough computational resources
to operate the recognizers. Therefore, M 45 may simulate r as
context-free grammars (CFG) instead because they are more
practical. This will cause errors. Still, since human languages
are only mildly context-sensitive [20], CFG recognizers should
be sufficient for most cases.

So far, we assume that p does not contain any ambiguity.
However, ambiguity is a feature in all human languages. For
instance, a user may ask a chatbot about getting an item from
Amazon which can have multiple meanings: (1) an island in
Greek mythology, (2) a forest in South America, (3) a river in
South America, and (4) an online marketplace. This can pose
significant challenges for M 4; to process and understand the
prompt.

If the problem is matched by a recognizer, the next question
is: will My solve the problem if it is difficult? Some
problems, like solving a Sudoku game, are obviously hard. A
Sudoku game is a mathematical puzzle that has been shown
to be NP-Complete, a class of hard problems [22]. Some
problems are innocuous at first glance. For instance, a user
may ask the chatbot how to fit items into a trunk of their car
in a way that maximizes the cargo value while respecting the
car’s weight limit. This is a variation of the knapsack problem,
which turns out to be as difficult as Sudoku [7].

I suspect that the enterprise hosting the chatbot is less
interested in ensuring the correctness of the recognizers and



the solvers. Therefore, they are not willing to solve PSPACE-
and NP-complete problems. Instead, they will deploy “good
enough” estimates to conserve the resource for M4;.

VII. DISCUSSION: MORE INTELLIGENT CHATBOT
A. Semiotics

Semiotics is a field of study of signs. A sign can be
anything—from words written on paper and sounds being
uttered, to abstract concepts existing inside someone’s mind
[23]. Computer scientists, particularly in the field of visualiza-
tion and analytics, deploy semiotics to better understand how
the user perceives information and understands it. An example
of this is a paper by Borgo et al. [24] which outlines how
semiotics could apply to glyph-based visualization (i.e. using
small visual markers to represent information). Semiosis is an
important process in semiotics; it involves converting one sign
to another. Visualization and analytics experts study semiosis
by trying to understand how altering visual content affects how
people understand data.

It is important to note that while all TM symbols are signs,
not all signs are symbols. Some signs emerge from a set
of symbols or combinations of other signs. For example, a
sentence is a group of words which are groups of letters, and
the sentence, the individual words, and the individual letters
are their signs. Furthermore, signs have syntax; they must
be put in order. An example is that if we scramble words
in a sentence, the sentence will carry a different meaning
or cease to make sense. Image-generating chatbots need to
deal with signs and semiosis to generate a good output. Fig.
1 shows that Al must first be able to create signs out of
its own symbols in X. As Fig. 1 was created by an image-
generating Al, the AI's ¥ contains symbols specifically for
encoding colours and other image metadata. However, we
can also observe other signs emerge from a combination of
the symbols. For instance, we can observe visual signs for
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Fig. 1. Image generated from Windows 11 Copilot on March 15, 2024 with
the prompt: “draw a therapist named eliza as an anime girl”.

women, medical gowns, stethoscopes, and more. The image
also demonstrates that the Al does not have a good mastery
of semiosis. First, the prompt was to create a therapist, a non-
medical professional who counsels people with mental health
issues. However, the Al conflates this sign with the sign of all
types of therapists—including ones working within hospitals.
This results in medical equipment and uniforms being added.
Secondly, the AI does not have a full grasp of pictorial syntax
(i.e. a flexible set of flexible for placing elements in an image
[25]) and places some items haphazardly. Lastly, the Al also
hallucinated some items that do not exist in the real world—
notably, the strange headphone full of decorations. It is not
enough to output pixels but also to critically think about image
fragments that are produced afterwards.

I am cognizant that ultimately, similar to computation,
human cognition and semiosis must also have the lowest
level that cannot be further decomposed. This argument is
also advanced by Shpet [26]. It is important to note though
that I am not arguing that contemporary mechanical computer
devices are incapable of higher levels of semiosis. Modern-
day mechanical computers do not merely compute. They can
also perform tasks not captured by the formal definition of
computation. For instance, they can accept a stream of data
from an environmental sensor and act on it on a real-time basis
[10]. Nevertheless, human semiosis has a biological root and
its ultimate goal is to maximize the chance of survival within
the physical world. Although certain types of Al, including
LLMs like ChatGPT, try to emulate aspects of the human
brain, a biological and survival-oriented realization of semiosis
may be necessary for a superior chatbot.

B. Repetition v. Creativity

In this section, we closely examine Definition 2. Within the
Defintion, we note that there are two identifiable goals that
are conflicting with each other. The first goal is to maintain
goodness which involves M reducing the size of L, to
remove some a’s. If M 4 is allowed to generate as many a’s as
possible, many of the a’s will be irrelevant—i.e. hallucinations.
An example of this is the picture of an impossible rat in a
retracted paper by Guo, Dong, & Hao [27]. The second goal
is to maximize the size of L, , so for each same prompt,
different users can obtain different answers. If the answers
are too similar to each other, the users may invite public
scrutiny. An example of this is a retracted paper by Zhang
et al. [28] which begins with: “Certainly, here is a possible
introduction for your topic:”, a phrase indicative of generative
Al being used. The two goals can conflict with each other
which results in many a’s that contain too much hallucination
or repetition. Worse, both can also be the case at the same
time. An example is the Shrimp Jesus images. In an effort to
drive up engagement on Facebook, unscrupulous individuals
post many Al-generated images of Jesus. Due to a lack of
quality control, many images are very surreal in nature. Some
include shrimps arranging themselves to form an image of
Jesus, hence the name, Shrimp Jesus [29].



I also argue that M 41, as a TM, is not truly creative, because
M4y is simply generating content within £, and its symbol
set cannot be modified. The size of £, can be extremely large,
but M4 is still bound by the rules and operations of a TM.
Let ¢ be the maximum length of 7, that M4; can produce,
then Mar can produce at most ||’ variations. To alter its
semiosis, it must be re-smithed using a Mr or Mp. So far,
my argument is similar to one advanced by Lovelace [30].
However, just because a TM like M 4 is not truly creative, I
do not argue that there will be no creative machines. Modern-
day computers and software are already more powerful than
TMs. For instance, our operating systems (OS) can download
new features from the Internet to update themselves. If one of
the features happens to include a superior driver for a webcam,
a microphone, or another input device, then we can argue that
the OS’ semiosis has changed. The OS can “see”, “hear” or
“sense” better with the features (or worse if the features are
buggy). These abilities, while not core to computer science
and not supported under CTT, may be what unlocks machine
creativity.

C. Interaction

Chatbots as TMs do not fully support interaction. Although
it can incorporate data from previous interactions and from the
Internet, once the user enters 7, the chatbots work in isolation
from the outside world. I argue, because of this, M4 is not
truly intelligent. To be truly intelligent, chatbots should behave
more like choice machines. Choice machines, first described
by Turing, are machines that are capable of being manipulated
externally. For instance, the machine can become stuck in
a certain state and require external interaction (e.g., human
intervention) to proceed [10]. The benefit of interaction is that
the machine is more embodied within the physical world.

The distinction between a choice machine and a TM is
a spectrum. At the lowest level, the difference is almost
imperceptible. For instance, a choice machine chatbot can ask
the user to provide an additional clarification prompt when
it is unable to deal with the current one. In this case, the
chatbot is stuck in a state and requires user interaction to
proceed. However, for such a simple design, we can also devise
a TM that simply answers the user that it cannot process
the prompt, and asks the user to provide a clearer prompt.
For a more complex choice machine, the Al is constantly
receiving information from the environment. An example of
this is a traffic camera that constantly receives video stream
data from the physical world. In this case, we cannot devise
any TM at all, because receiving a stream of data is equivalent
to having the input tape being constantly edited while the
machine is running [10], [31]. Humans, similar to self-driving
vehicles, have sensors that constantly monitor the environment.
Therefore, it follows that human cognition cannot be modelled
using TMs. Accordingly, for a more intelligent chatbot to be
created, it must break free from the restrictive framework of
CTT.

Applying formal methods to interaction is even more dif-
ficult than analyzing a TM. For instance, while a choice

machine is not a TM, parts of its operations can still resemble
those of a TM. As such, it is subject to all undecidability
issues that affect TM and more. This could also explain
why in the field of human-computer interaction (HCI), a
field that studies how human users interact with computers,
never relies on fully formal evaluations. HCI also relies on
informal qualitative methods. This is because computers often
encounter undecidable problems, and human semioses are too
flexible to be captured by formal notions. Therefore, formal
methods will fail at certain points. For instance, we may try
to create a “safe” chatbot that can never swear, even if the
user is tricking it into swearing. The evaluation of such a
chatbot will encounter two issues. First, as a chatbot is a TM,
we cannot perfectly predict the output. Secondly, while the
chatbot may be unfailingly polite, the user—based on their prior
experience and background, may see swear words within the
output anyway.

D. Undecidability, Evaluation, and Critical Use of Al

While this paper has argued that analyzing chatbots per-
fectly is mathematically impossible, it does not argue that
no evaluation should be carried out. Although we will never
live up to Hilbert’s mantra: “We must know. We shall know”
[32], it does not mean that we should admit defeat. Muller
[32] argues that modern computers only exist because, in
Turing’s attempt to prove that a problem is undecidable, he
also inadvertently provided a blueprint to a basic computer. In
fact, if we blindly insist on what is mathematically possible,
many fields cannot exist. Software verification research will
halt. Human-computer interaction will be toppled as humans
are even more opaque than computers. This all leads to a
saying: “Perfect is the enemy of the good.” Nevertheless,
being aware of the fundamental limitations of all chatbots
is extremely important, as it promotes critical thinking about
Al uses. For instance, if a user knows that a chatbot is not
a perfect computer coder, they will be more critical of the
chatbot’s output. Furthermore, they will be less inclined to
incorporate the output into the main codebase without any
vetting or verification.

VIII. CONCLUSION

This paper defines chatbots and their training processes as
TMs. While TMs are impractical, they allow us to explore
certain aspects of computations. The paper also discusses
some challenges with chatbots with respect to CTT. Lastly,
I argue that semiotics, choice machines, and interactivity
are important for more intelligent chatbots. While evaluating
chatbots formally will be an insurmountable challenge, this
does not mean that we should halt all work. Other advances
can provide scientific and technological rewards to those who
persist. Being able to tackle some instances of undecidable
problems can still be useful. Recognizing the limitations can,
however, still allow us to better understand and work produc-
tively with Al Future work should explore hypercomputation
which involves tasks not reducible to TM operations [33]. An



example of hypercomputation is expanding the X set to include
real numbers [33].

DECLARATION OF THE USE OF GENERATIVE ARTIFICIAL

Generative Al was used to generate Fig.
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manuscript. The free version of Grammarly was used for
editing.
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